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Abstract
We study the properties of the discrete Wigner distribution for two qubits
introduced by Wotters. In particular, we analyse the entanglement properties
within the Wigner distribution picture by considering the negativity of the
Wigner function (WF) and the correlations of the marginal distribution. We
show that a state is entangled if at least one among the values assumed by
the corresponding discrete WF is smaller than a certain critical (negative)
value. Then, based on the partial transposition criterion, we establish a relation
between the separability of a density matrix and the non-negativity of the
WFs relevant both to such a density matrix and to the partially transposed
thereof. Finally, we derive a simple inequality—involving the covariance-
matrix elements of a given WF—which appears to provide a separability
criterion stronger than the one based on the local uncertainty relations.

PACS numbers: 03.67.Mn, 03.65.Wj, 42.50.Dv

1. Introduction

A quantum system with continuous degrees of freedom can be represented in terms of a Wigner
function [2] defined as a real function on the phase space. The Wigner function (WF) is similar
to a probability distribution (its integration over the phase space is normalized to one) even
if it can take negative values on restricted domains. There is an extensive literature on the
continuous-system WF [3–5] due to its wide applicability in different contexts of physics.
Concerning the WF of discrete systems, the literature is less extensive even if this theme
has recently attracted a lot of interest mainly in view of the role that a discrete phase-space
structure can play within the quantum information theory [1, 6–14]. In this respect, paper [7]
contains a useful list of references. Different generalizations of the WF to quantum systems
with a finite-dimensional Hilbert space have been proposed in the literature such as (1) the
continuous WF for spin variables [15] and (2) the definitions of WF based on a discrete phase
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space. As to the latter, early studies were made in [16, 17]. A discrete WF has been introduced
in [1] and [18] which generalizes the 2 × 2 case of [17] and is valid for the systems having
an N-dimensional Hilbert space, with N being a prime or a power of a prime. More recently,
an alternative definition of WF involving the Galois fields [6–8] has allowed the study of the
composite-dimensional case and evidenced several interesting tomographic properties [6, 19].

The present paper is focused on studying the entanglement properties of a two-qubit
system by using the discrete WF defined in [1]. It is worth noting that the two-qubit (and
more in general many-qubit) systems have received an increasing attention, not only within the
spin models, but also in the recent literature on optically trapped bosons modelled within the
Bose–Hubbard picture [20]. The impressive experimental progress in controlling the spatial
trapping of bosons makes the realization of many-qubit systems a quite realistic objective. In
this paper, we find some new separability criteria and recast other known criteria in terms of
discrete WFs. We check them by evaluating the two-qubit entanglement and show that the
discrete WF describes both classical and quantum correlations better than the density-matrix
approach. We note how using the WF not only improves the visualization of the system
state but is also expedient experimentally: since the WF is directly related to tomographic
techniques, the separability criteria coming from the WF do not require to know of all the
matrix elements.

In section 2, we review the definition of discrete phase-space given in [1]—this is
particularly useful for our purposes—and the corresponding discrete Wigner and Characteristic
functions. We present some basic properties of these functions which provide a useful tool for
studying quantum correlations. In section 3 we consider four different separability criteria in
terms of the two-qubit discrete WF and of its covariance matrix. In particular, we show that
(1) there is a negative value of discrete WF that allows one to discriminate between separable
and entangled states, (2) the partial transposition criterion can be reformulated in terms of the
two-qubit discrete WF, (3) there is a nontrivial link between the separability of the density
matrix and the non-negativity of the WFs corresponding both to the density matrix and to its
partial transposed matrix, (4) the local uncertainty relations relevant to phase space operators
can be generalized in terms of the WF covariance matrix (thus evidencing the difference
between classical and quantum correlations) and (5) the generalized uncertainty principle, so
far studied for WFs relevant to continuous phase space, is extended to the case of a discrete
WF.

2. Discrete phase space and Wigner function

In a discrete r-dimensional Hilbert space, with r being a prime number, the phase space can
be defined [1] as an r × r array of points. The latter can be labelled by pairs of coordinates
α = (q, p), each taking values from 0 to r − 1. For each coordinate we define the usual
addition and multiplication mod r thus obtaining the structure of a finite mathematical field
Fr with r elements (0, 1, . . . , r − 1). If the dimension is N = rn, with r prime and n an
integer greater than 1, the discrete phase space can be built in two ways, both giving a discrete
phase space formed by an N × N grid: the first involves the extension FN of the primitive
field Fr [7, 21], while the second is based on performing the n-fold Cartesian product of r × r

phase spaces [1]. In the present paper, we will use this last definition of discrete phase-space
(entailing the definition of WF given in [1]). The choice of phase-space structure is justified
by the direct connection with the tensor-product structure of the Hilbert space ensuing from
the decomposition of the system in two or more subsystems, which is a useful feature for
studying the entanglement. According to this definition, the phase-space points α are labelled
as n-tuple (α1, α2, . . . , αn) of coordinates, each αi pertaining to the ith subsystem. In each



Discrete Wigner distribution for two qubits: a characterization of entanglement properties 5909

subsystem with prime dimension r, we can build standard lines as set of points satisfying
the equation (uq + vp)mod r = c. However, we cannot define uniquely lines over the entire
phase space (with modular arithmetic): in [7] there is an example of two sets of points which
form two parallel ‘lines’ but intersect in two distinct points. Nevertheless, we can define the
alternative concept of slice [1]: given a set of n lines {λi} (one for each subsystem), the slice
is the set of all points α = (α1, α2, . . . , αn), where αi ∈ λi . A weaker notion of parallelism
can be defined: two slices are parallel if each of the n lines forming the first slice are parallel
to the corresponding n lines of the second slice.

2.1. Definition of the discrete WF

The discrete WF relevant to a N = rn-dimensional system can be defined [1] by means
of the set of discrete phase-point operators Â(α) (or �(α) [9]). Consistently with the
definition of phase space in terms (of Cartesian product) of constituent subspaces [1], phase-
point operators Â(α) are defined as tensor product of phase-point operators relevant to the
corresponding subsystems: Â(α) = Â(α1) ⊗ Â(α2) ⊗ · · · ⊗ Â(αn). Since they form a
complete orthogonal basis for the Hermitian N × N matrices, any density matrix can be
written as ρ̂ = ∑

α W(α)Â(α), where the real-valued coefficients

W(α) = 1

N
tr[̂ρÂ(α)] (1)

represent the discrete Wigner function (also called the discrete Weyl symbol). Phase-point
operators exhibit two basic properties:

(i) for any couple of points (α1, α2)

tr[Â(α1)Â(α2)] = Nδ(α1, α2), (2)

(ii) given any slice λ in the phase space, the projector relevant to λ can be written as

P̂λ = 1

N

∑
α∈λ

Â(α). (3)

The latter definition implies that the set of all P̂λ′ for which λ′ is parallel to λ forms a set
of mutually orthogonal projection operators. Moreover, given the slice λ = (λ1, λ2, ·, λn),
then P̂λ is the tensor product P̂λ1 ⊗ P̂λ2 ⊗ · · · ⊗ P̂λn

of projectors relevant to the subsystems.
Such properties, analogous to those characterizing continuous phase-point operators [1], can
be used to derive the discrete-WF properties. Owing to formulae (2) and (3) discrete WFs
feature two crucial properties. First, if W(α),W ′(α) correspond to density matrices ρ, ρ ′,
respectively, then formula (2) entails that

N
∑

α

W(α)W ′(α) = tr(ρρ ′). (4)

Second, due to equation (3), given a complete set of N parallel slices, for each slice λ, the N
real numbers pλ = ∑

α∈λ Wα are the probabilities of the outcomes of a specific measurement
associated with λ. Hence

∑
α Wα = 1 (normalization property).

Let us consider first the simple case N = 2 (single qubit). The phase-point operators can
be written in terms of Pauli matrices as [1]

Â(α) = 1

2

[
I + (−1)qσz + (−1)pσx + (−1)q+pσy

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz = [σx, σy]/2i. The single-qubit phase space is the set of points α = (q, p),
where q, p = 0, 1, exhibiting properties of F2. Since the density matrix for a general
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one-qubit state can be written (within the standard computational basis) in terms of three
independent real elements ρ00, Re(ρ01), Im(ρ01), we have W(q, p) = 1

4 {[1 + (−1)q]ρ00 +
[1 − (−1)q]ρ11 + (−1)p2 Re(ρ01) + (−1)q+p2 Im(ρ01)}. In the case of two qubits, the WF
has a more complex expression. Upon noting that the phase space operators are defined as
Â(α1, α2) = Â(α1) ⊗ Â(α2), the WF becomes

W(q1, q2, p1, p2) = 1
4 tr[̂ρÂ(q1, p1) ⊗ Â(q2, p2)]. (5)

When necessary, we shall write Wρ , where the subscript means that the WF is associated with
density matrix ρ.

2.2. The discrete characteristic function

The set {I, σx, σy, σz} forms an orthogonal basis for the set of Hermitian operators acting
on a single qubit. Thus, any density matrix ρ for a single qubit can be written as
ρ = 1

2

∑
uv χ(u, v)̂S(u, v) while the characteristic function for a single qubit is

χ(u, v) = tr[ρŜ(u, v)] (6)

where Ŝ(0, 0) = I, Ŝ(1, 0) = σx , Ŝ(0, 1) = σz and Ŝ(1, 1) = σy . When necessary,
we write the argument β instead of (u, v), or the single index i, where i = u + 2v

assuming integer values from 0 to 3. In the case of two qubits, any density matrix can
be written as ρ = 1

4

∑
β1β2

χ(β1, β2)S(β1) ⊗ S(β2). The two-qubit characteristic function
is thus defined as χ(β1, β2) = tr[ρŜ(β1) ⊗ Ŝ(β2)]. Function χ(β) is connected with the
discrete WF by a discrete Fourier transform. For example, in the single-qubit case (r = 2),
W(q, p) = 1

4

∑
β(−1)(qu+pv)χ(u, v) and in the two-qubit case

W(q1, q2, p1, p2) = 1

16

∑
u1,u2,v1,v2

(−1)(q1u1+p1v1)+(q2u2+p2v2)χ(u1, u2, v1, v2).

It is worth noting that the determination of χ(β) is connected to a specific tomographic
technique [6]. For example, in the case of spin 1

2 particles, it consists of repeated measures
of spin ‘up versus down’ along three directions relevant to each particle. The WF can be
determined via the previous equations from the characteristic function. The inner product rule
for χ(β) corresponding to formula (4) is

1

N

∑
β

χ(β)χ ′(β) = tr(ρρ ′). (7)

Operators Ŝ can be thought as translation operators. The single-qubit WF relevant to
ρ̂ ′ = Ŝ(a, b)̂ρŜ(a, b)† is Wρ ′(q, p) = Wρ(q + a, p + b), where the sum in the argument
is mod 2. In the two-qubit case, operators Ŝ act as translation operators on each single-qubit
phase space. This formalism supplies a useful tool for recognizing the translational covariance
of the WF [9, 10].

2.3. Graphical representation, pure and mixed states

The phase space of the single qubit is represented in figure 1, left panel. A simple example
of WF is given by the spin j = 1/2 coherent state |ξ 〉 = (|0〉 + ξ |1〉)/

√
1 + |ξ |2 (where

|0〉 and |1〉 are the spin-up and the spin-down state, respectively), which is known to be the
most general pure state for a single qubit. Given |ξ 〉, the corresponding WF is depicted in
figure 1, right panel. The WF can have only one negative element (otherwise, at least one
probability associated with a direction would be negative) determined by |Re(ξ) + Im(ξ)| > 1
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p

1 W(0,1) W(1,1)
0 W(0,0) W(1,0)

0 1
q

1 −Re(ξ) − Im(ξ) |ξ|2 −Re(ξ) + Im(ξ)
1 + Re(ξ) + Im(ξ) |ξ|2 + Re(ξ) − Im(ξ)

Figure 1. Left panel: graphical representation of the discrete WF for one qubit. Right panel: an
example of WF for SU(2) coherent state with j = 1/2 (up to a factor 1/2(1 + |ξ |2)).

(p1, p2)

11 W(00,11) W(01,11) W(10,11) W(11,11)
10 W(00,10) W(01,10) W(10,10) W(11,10)
01 W(00,01) W(01,01) W(10,01) W(11,01)
00 W(00,00) W(01,00) W(10,00) W(11,00)

00 01 10 11
(q1, q2)

Figure 2. Graphical representation of the discrete WF for two qubits.

or |Re(ξ) − Im(ξ)| > |ξ |2. An important observation is that, while most positive value of the
single-qubit WF is 1/2, the most negative value (1 − √

3)/4 is assumed in correspondence to
state |ξ 〉 with ξ = (1 + i)/(1 − √

3) [6]. These extremal values are useful to write a simple
separability criterion.

In figure 2, we illustrate Wα = W(q1, q2, p1, p2) on the discrete phase-space points for
the two qubit case, where the phase-space label is α = (α1, α2) = (q1, q2, p1, p2). This figure
is useful to clarify the notation we adopt for the WF (which differs from that of [7]). The
purity character of a state can be evidenced both from the WF and from the characteristic
functions. From the general equations (4) and (7), we find

1

N
� N

∑
α

W(α)2 = 1

N

∑
β

χ(β)2 = tr(̂ρ2) � 1, (8)

where the equality holds for pure states whereas the inequality is involved by mixed states. In
order to define a ‘mixed state’ we recall that, upon introducing the basis {|e〉 : ρ|e〉 = pe|e〉}
relevant to a given density matrix ρ, a state is ‘mixed’ when more than one eigenvalue
pe is nonzero. In this case, the system state is represented by ρ = ∑

e pe|e〉〈e| where
probabilities pe evidence the characteristic lack of information about the relative phases of the
state superposition. An interesting feature of formula (8) is that the pseudo-probability WF
cannot be concentrated in a too small region of phase space. We will see that this is equivalent
to the uncertainty principle.

2.4. Axis operators

In the single-qubit case the axis operators are defined as [1] ξ̂i = 1
2

∑
q,p ξi(q, p)Â(q, p),

where ξ1(q, p) := p, ξ2(q, p) := (q + p)mod 2, and ξ3(q, p) := q while ξ̂1 = p̂, ξ̂2 = d̂

and ξ̂3 = q̂ (relevant to vertical, diagonal and horizontal lines) are the vertical, diagonal and
horizontal axis operators, respectively. The explicit form of operators ξ̂i reads

ξ̂i = 1
2 [I − Ŝ(i)]. (9)
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where Ŝ(i) is defined after formula (6). In this case, operators q̂ and p̂ play the role of
(discrete) position and momentum operators, respectively. The spectrum of such axis operators
is completely determined by the (two-eigenvalue) spectrum of σz and σx , respectively. In the
following operator d̂ will be named diagonal-direction (or simply diagonal) operator, since it
is connected to the diagonal lines. Note that ξ̂i obey commutators [̂ξi, ξ̂j ] = 2iεijkξ̂k showing
the SU(2) algebraic structure. Thus, they have essentially the same physical meaning of the
three Pauli matrices which is to describe two-level systems. The only difference is that the
relevant eigenvalues are 0 and 1 (rather than ±1/2) that are more useful for treating quantum
information applications.

Analogously to the continuous case, we can define the anticommutator

{̂ξi, ξ̂j }S = 1
2 (̂ξi ξ̂j + ξ̂j ξ̂i ) (10)

(where the label S stands for standard). Differently from the continuous case, the mean value
tr(ρ {̂ξi, ξ̂j }S) cannot be written as sum over the phase-space points of qpW(q, p). We thus
introduce an alternative definition of anticommutator

{̂ξi, ξ̂j }D = 1
2 (̂ξi + ξ̂j − |εijk |̂ξk), (11)

where D stands for discrete. This definition allows one to express the symmetrized product
{̂qi, p̂j }D as a sum over the phase space of W(q, p) multiplied by qp. In general,

〈̂ξi〉 =
∑
q,p

ξiW(q, p), 〈{̂ξi, ξ̂j }D〉 =
∑
q,p

ξiξjW(q, p). (12)

The introduction of the symmetrized product (11) is motivated by the identity ξiξj =
1
2 [ξi + ξj − (ξi + ξj )mod2] (with ξi = q, p, d ∈ 0, 1).

In the two-qubit case (N = 4), we can perform nine possible measurements (nine
combinations of Pauli matrices), corresponding to the nine striations of phase space. This
tomographic scheme is not the most efficient since five orthogonal measurements suffice to
determine the state. Nevertheless, we will consider such scheme (involving nine striation
operators ξ̂i ⊗ ξ̂j ) in that it leads to a definition of the WF exhibiting more interesting
entanglement properties.

3. Entanglement properties in two qubit systems

Given a two-qubit density matrix ρ, such a state is said to be separable if there exists
a decomposition ρ = ∑

k pk|ψk〉〈ψk| ⊗ |φk〉〈φk| (with the probabilities
∑

k pk = 1). A
nonseparable state is said to be entangled. If a state can be written as a density-matrix product
ρ = ρ ′ ⊗ ρ ′′ (ρ ′, ρ ′′ relevant to the two constituent subsystems) then the corresponding WF
is written as W(q1, q2, p1, p2) = Wρ ′(q1, p1)Wρ ′′(q2, p2). Thus the WF associated with a
separable state is

W(q1, q2, p1, p2) =
∑

k

pkW
′
k(q1, p1)W

′′
k (q2, p2). (13)

In this perspective—so far scarcely considered in the literature—an entangled state exhibits a
WF that cannot be written in the form (13). If a classical probability distribution can be written
nontrivially as p(q1, q2, p1, p2) = ∑

i pkp
′
k(q1, p1)p

′′
k (q2, p2), the presence of more than one

pk � 0 indicates a (classical) correlation. The WF representation (13) clearly evidences that
separable states display a classical-like correlation since the related WFs have the same form
of a classicafl distribution, whereas entangled states embody a different type of correlation
named quantum correlation. We investigate the entanglement properties of two-qubit WF
within (1) the negativity approach, (2) a direct reformulation of PT criterion in terms of WF,
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Figure 3. Left panel: graphical representation of the discrete WF for a two-qubit separable state
with the most negative values. Right panel: graphical representation of the discrete WF for the
singlet state.

(3) the study of non-negativity of WF relevant both to the density matrix and to its partial
transposed (deriving from the PT criterion), (3) the local uncertainty relation (LUR) approach
and (4) the generalized uncertainty principle (GUP) of the continuous case.

3.1. Negativity of WF and entanglement

We show that the negativity of Wρ can be connected to the non-separability. We give a
sufficient condition for non-separability, based on the observations of subsection 2.3, where it
is shown that any single-qubit WF assumes (1−√

3)/8 as most negative value and 1/2 as most
positive value. We can get a two-qubit WF with negative elements considering the product
of WFs of single qubit W(α1)W(α2), where W(α1) has negative elements, while W(α2) is
positive. The most negative value of such a two-qubit WF is given by considering the most
negative value for W(α1) and the most positive value for W(α2), as exemplified in figure 3,
left panel. The minimum value we get is (1 − √

3)/8 � −0.0915, which is the lower limit
not only for WF relevant to product states. It is easy to show that any convex combination
(13) (i.e. separable states) have, as most negative value, (1 − √

3)/8. However, the value we
have found is not in general the most negative value of a WF, as we can see in figure 3, right
panel. The state represented is the singlet state (a particular the Bell state), which results to
be maximally entangled. Thus if the WF has a negative value W(α) < (1 − √

3)/8, the state
is entangled. Of course, it a WF has all the values W(α) � (1 − √

3)/8, then the state can be
entangled or separable. The partial transposition criterion, analysed in next two sections, will
be useful in such cases.

3.2. Partial transposition criterion

For all bipartite states (both discrete and continuous), the well-known partial-transposition
(PT) criterion [29, 30] turns out to be a necessary condition for separability. In the 2 × 2 and
2 × 3 dimensional cases, it is also a sufficient condition.

In the discrete case, the transposition action on a single-qubit WF and on its characteristic
function gives, respectively, WρT (q, p) = Wρ(q, p) − (−1)q+ptr(̂ρσ̂y) and χρT (1, 1) =
−χρ(1, 1) (where χ is unchanged for (u, v) �= (1, 1)). In the two-qubit case, the PT with
respect to the second subsystem of ρ provides the new operator ρT2 whose matrix elements
are ρT2

mµnν = ρmνnµ, where Latin (Greek) indices refer to the first (second) subsystem. The
WF WρT2 (α1, α2) corresponding to ρT2 reads

1

4

∑
mµnν

ρmνnµAnm(α1)Aµν(α2) = 1

4

∑
mµnν

ρmµnνAmn(α1)A
∗
µν(α2) = 1

4
tr

[
ρA(α1) ⊗ A∗(α2)

]
,
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Figure 4. Application of the PT criterion to a Werner state.

where partial transposition is shown to be equivalent to the substitution Âα1 ⊗Âα2 → Âα1 ⊗Â∗
α2

.
Interestingly, the latter is connected to the alternative definition [6, 7] of WF involving
tomographic properties that differ from those discussed in section 2.4. As to the action of PT
on a WF and its characteristic function we find

WρT2 (α) = Wρ(α) − τρ(α), χρT2 (α1, 11) = −χρ(α1, 11), (14)

where the trace-like term τρ(α1, α2) = (−1)q2+p2 tr(̂ρÂα1 ⊗ σ̂y)/2 in equation (14) embodies
the effect of the PT. It is known that the operator ρT2 relevant to a separable-state density
operator possesses non-negative eigenvalues. In view of the properties just discussed, the PT
criterion can be reformulated within the WF approach. If ρT2 has all non-negative eigenvalues,
then tr(ρT2ρ ′) � 0, for all density matrices ρ ′, thus giving∑

α

WρT2 (α)Wρ ′(α) =
∑

α

χρT2 (α)χρ ′(α) � 0, ∀Wρ ′(α), χρ ′(α), (15)

which is a necessary and sufficient condition for separability. To illustrate this result,
we consider the Werner (mixed) state ρ = x|�−〉〈�−| + (1 − x)I/4, where |�−〉 =
(|0, 1〉 − |1, 0〉)/√2 and assume ρ ′ to be the pure state |�+〉 = (|0, 0〉 + |1, 1〉)/√2. It is
easy to show that (see figure 4)

∑
α WρT2 (α)W�+(α) = (1 − 3x)/16, consistent with the well-

known separability of the Werner state for x � 1/3. This method states that the separability
of ρ is ensured when inequality (15) holds for any W ′

α thus having a limited operational value.
Nevertheless, it is important in that (1) its violation for some W ′

α entails that ρ is entangled
and (2) it is useful to link in a direct way the non-negativity of the WF to the entanglement
properties, as we show in the next section.

3.3. Non-negativity of WF and separability

We now return to the difficult problem of establishing a connection between the non-negativity
(negativity) of WF and the separability (non-separability) of the corresponding state. The
starting point consists in observing that any Bell state has a WF with negative elements,
whereas a Werner state has non-negative WF for any x � 1/3 (separable cases) (this is
illustrated in figure 4). In this respect, however, we know that there exist separable states
with negative WF such as the state described in figure 3, left panel. On the other hand,
one might conjecture that the non-negativity of WF is a sufficient condition for separability.
Unfortunately, one can show that non-negative WFs exist which correspond to entangled
states. As a possible strategy for solving this problem, we thus propose a simple method based
on considering the non-negativity features of the WFs relevant both to ρ and to ρT2 in order to
check the separability of the state.

Let us assume that, given a state ρ with Wρ and WρT2 non-negative for every phase-space
point α, there is a Wρ ′ giving

∑
α WρT2 (α)Wρ ′(α) < 0 (this entails, using (15), that the state is
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entangled). We show that these assumptions lead to a contradiction. First, we note that the last
inequality can be rewritten as

∑
α Wρ(α)Wρ ′(α) <

∑
α τρ(α)Wρ ′(α). On the other hand, the

non-negativity of both Wρ and WρT2 , and equation (14) (which gives Wρ(α) � τρ(α) for all
α) imply that

∑
α Wρ(α)Wρ ′(α) �

∑
α τρ(α)Wρ ′(α), which clearly involves a contradiction.

It follows that, given a state ρ, if both Wρ {and} WρT2 have non-negative elements, than
ρ is separable. Vice versa, if a state ρ is entangled, then Wρ or WρT2 has negative values.
Such a result—which is a necessary condition to ensure entanglement (sufficient condition for
separability)—relates the nonclassic character of entangled states to the presence of negative
elements in Wρ and WρT2 . This criterion has been confirmed by testing it on thousands of
randomly-generated density matrices and on the Werner state (for x � 1/3 both Wρ and WρT

2

are positive, which implies separability).

3.4. Local uncertainty relation

It is known that the violation of local uncertainty relations (LURs) is a signature of
entanglement [27, 28]. Given two qubits 1 and 2, the inequalities∑

i

U [̂ξ (1)
i ] � 1

2 and
∑

i U [̂ξ (2)
i ] � 1

2 (16)

are known to be uncertainty relations relevant to the single qubit systems k = 1, 2, where
U [̂ξ (k)

i ] = 〈(̂ξ (k)
i )2〉 − 〈̂ξ (k)

i 〉2 are the uncertainties relevant to the set of axis operators ξ̂
(k)
i

defined in formula (9). We note that simple calculations prove the equivalence between
formulae (16) and (8), entailing that the pseudo-probability cannot be concentrated in a too
small region of the phase space. As shown in [27], in the two-qubit case, separable states are
constrained by the single-qubits uncertainty relations∑

i

U [̂ξ (1)
i ⊗ I + I ⊗ ξ̂

(2)
i ] � 1. (17)

As a consequence, a state appears to be entangled if inequality (17) is violated.
LUR inequalities can be formulated in terms of WF, by defining the first-order covariance

matrix of single-qubit WF

V
(X)
ij = 〈{�ξ̂i,�ξ̂j }X〉 = 〈{̂ξi ξ̂j }X〉 − 〈̂ξi〉〈̂ξj 〉, (18)

where we use the axis operators ξ̂i = p̂, d̂, q̂ and �ξ̂i = ξ̂i − 〈̂ξi〉. Moreover, the label
X = S,D, linking to the two types of anticommutator defined in formulae (10) and (11), leads
to two different covariance matrices. Nevertheless, the following results are independent
from definition of anticommutator, and we will write the parameter X only when necessary.
Recalling that matrix Vij is a 3 × 3 semi-definite positive symmetric matrix and that diagonal
elements Vii , named variances, coincide with the uncertainties U [ξi], then the sum of diagonal
elements Vii is positive, consistent with (16).

Following the scheme of [32] for the continuous case, the covariance matrix of two qubits
is built by writing formula (18) with the enlarged set ξ̂ = (p̂1, d̂1, q̂1, p̂2, d̂2, q̂2) giving a 6×6
matrix. A compact version of covariance matrix is given by

V =
[

A C
CT B

]
, (19)

where A,B and C are 3 × 3 matrices. Note that matrix elements of A and B represent the
covariance matrix Vij relevant to qubit 1 and to qubit 2, respectively, while matrix C represents
the inter-qubit correlations between axis operators ξ̂

(1)
i and ξ̂

(2)
i . Two-qubit covariance matrix

can be easily computed by means of equation (12) once the WF is known. It is easy to show
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Figure 5. Two examples of covariance matrix of two qubit WF.

that the inter-qubit correlations Cii measure the degree of correlation between spin observables
σ̂

(1)
i and σ̂

(2)
i . Hence, their operational meaning is the establishment of the interdependence of

the two constituent subsystems. At this point, the WF formulation of LURs is easily achieved.
Upon observing that

U
[̂
ξ

(1)
i ⊗ I + I ⊗ ξ̂

(2)
i

] = U
[̂
ξ

(1)
i

]
+ U

[̂
ξ

(2)
i

]
+ 2

{〈̂
ξ

(1)
i ⊗ ξ̂

(2)
i

〉 − 〈̂
ξ

(1)
i

〉〈̂
ξ

(2)
i

〉}
,

the LUR relevant to the axis operators becomes

trA + trB + 2 trC � 1, (20)

where only diagonal elements of submatrices are involved, thus making the formula
independent from the definition of anticommutator. This equation has the following
interpretation: if the correlations Cii are negative and their absolute values are sufficiently
large, then the inequality is violated and the state is entangled. This evidences that non-
separability strongly depends on the inter-qubit correlations described by tr C. An important
problem that deserves to be clarified is raised by those entangled states where correlations Cii

are positive. To answer this question, in figure 5, we consider covariance matrices relevant
to both the WF of Werner’s state (including as well the singlet state with weight x) and the
WF of the Bell state |�+〉 = (|00〉 + |11〉)/√2. In the first case, formula (20) is violated for
x � 1/3, which is a correct result. Instead, in the second case, formula (20) is not violated,
thought the Bell state is known to be maximally entangled. We can show that, except for the
singlet state, no Bell state violates formula (20) and the criterion does not supply information
about separability. The singlet case (corresponding in the figure 5 to the x = 1 case) differs
from the other Bell states in that all the diagonal elements of matrix C are negative. The other
Bell states have elements Cii with alternating sign, which makes the violation of formula (20)
impossible. Nevertheless, it is clear that such correlations, thought not negative, contain a
large amount of information on non-separability. We thus propose the following modified
inequality as a necessary condition for separability∑

i

|Ci,i | � trA + trB − 1

2
, (21)

whose main feature is to replace the diagonal elements of C with their absolute values. The
effectiveness of formula (21) is confirmed by the fact that it is violated by any Bell states. The
quantum-mechanical meaning is also clear in that, if a state is separable, then the absolute
value of the correlations must be bounded from above. We easily prove that this inequality
follows from equation (17) by resorting to the more general operator ξ̂

(1)
i ⊗I + εiI ⊗ ξ̂

(2)
i where
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εi = ±1. With such a choice, the LUR condition written in terms of covariance matrix reads
tr A+tr B +2

∑
i εiCi,i � 1. To obtain inequality (21), it is sufficient to consider εi = −1 when

Cii is positive. As a final comment, we note that the sum of correlations (21) thus exhibits an
upper limit for separable states: entangled states may overcome it, and the exceeding part is
an indicator of quantum correlation.

3.5. Generalized uncertainty principle (GUP) and PT criterion

In the continuous case, a well-known separability criterion [31, 32] is obtained by combining
the generalized uncertainty principle (GUP) with the application of the PT criterion to the
variance matrix relevant to the position and momentum operators. For a system of two (one-
dimensional) particles in a continuous space, the GUP-based criterion states that, if a state ρ

is separable, one can construct a matrix M = tr(ρξiξj ) which is semi-definite positive under
PT, namely [32]

M = V +
i

2
� � 0, (22)

where Vαβ = 〈{�ξ̂α,�ξ̂β}〉 is the covariance matrix, �ξ̂α = ξ̂α − 〈̂ξα〉, ξ̂α = {̂q1, p̂1} and
[̂ξα, ξ̂β] = i�αβ with

� =
[

J 0
0 J

]
, J =

[
0 1

−1 0

]
.

Following the PT criterion, given a separable state ρ̂ and its WF Wρ , the PT generates a
non-negative operator ρ̂T2 and a genuine WF WρT2 still satisfying equation (22).

The extension of the previous GUP-based criterion to the discrete case requires that each
separable state can be associated with a matrix M semi-definite positive under PT. Considering
first the single-qubit case, we define the matrix Mij = [tr(̂ρξ̂i ξ̂j )] written in terms of the list
of operators ξ̂i = Î , p̂, d̂, q̂. It can be easily shown that ρ � 0 entails M � 0. The latter is
equivalent to the condition

V S
jk +

i

2
εjklχl � 0, (23)

where covariance matrix V (S) in equation (18), in the present case, is a 3 × 3 matrix and is
related to the standard definition of anticommutator (10). Condition (23) implies tr(V ) � 1/2,
which is equivalent to the LUR equation for single qubit [27]. It is worth observing how any
other choice for the set {ξi} implies that M � 0 iff ρ � 0 provided {ξi} forms a complete basis
of the space of Hermitian matrices for a single qubit.

In the case of two qubits, once more in analogy with the continuous case, it seems
quite natural to derive M from the set ξ̂ = (I, p̂1, d̂1, q̂1, p̂2, d̂2, q̂2). Following the standard
prescriptions [32] for calculating the GUP inequality, we have that M � 0 and, equivalently,[

Ajk + i
2εjklξ

(1)
l Cjn

Ckm Bmn + i
2εmnsχ

(2)
s

]
� 0. (24)

The matrix on the left-hand side is a 6 × 6 matrix that can be written in terms of the 3 × 3
matrices A,B,C appearing in equation (19). Similar calculations show how M̃ = tr(ρT2ξiξj )

is such that M̃ � 0 if ρT2 � 0. Then we conclude that the separability condition for a state ρ

(achieved within the PT criterion when both ρ � 0 and ρT2 � 0 are satisfied) is now ensured
by M � 0 and M̃ � 0. Note that condition M̃ � 0 can be reduced as well to the equivalent
form [

Ajk + i
2εjklχ

(1)
l C̃jn

C̃km B̃mn + i
2εmnsχ̃

(2)
s

]
� 0, (25)
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Figure 6. An example of GUP in the two-qubit case.

where B̃, C̃ are determined using once more the PT operation. Formula (25) containing the
axis-operator covariance matrix is the core of the two-qubit PT criterion. In figure 6, we
illustrate the application of the present criterion to the Werner state. In this case V = M and
the eigenvalues of matrix M̃ (relevant to ρT2 ) are positive for x � 1 (rather than for � 1/3).
Unfortunately, this means that the GUP is not violated so that the criterion does not give
information about separability. This can be explained with the fact that, when using the set
of operators (p̂1, d̂1, q̂1, p̂2, d̂2, q̂2), the non-negativity of M̃ is only a necessary condition for
separability. In order to cure this problem, we have generalized the GUP-based criterion by
using the enlarged set of operators ξ̂i ⊗ ξ̂j , which leads to a 9 × 9 matrix M. In this case, we
could have a violation of the positivity condition under partial transposition. This result will
be discussed in a separate paper.

4. Conclusions

In the present work, we have considered the WF defined in [1] focusing our attention on two
properties of the two-qubit WF, the negativity and the covariance matrix, which are useful
in the characterization of entanglement. After reformulating/generalizing the PT, LUR and
GUP-based separability criteria in the WF formalism, we have tried to evidence what features
of the WF and of its covariance matrix are able to reveal the presence of entanglement.

In section 3.1, we have found that a two-qubit WF relevant to a separable state can not
assume values lower than (1 − √

8)/4. In section 3.2, we have recast the PT criterion 14 in
terms of WF by means of inner-product rule 4. Based on this result, in section 3.3, we have
shown that the non-separability of ρ entails the presence of negative elements in Wρ or in
WρT2 . Interestingly, these facts relate the main non-classical feature of the WF (the presence
of negative values) to the presence of entanglement in the two-qubit system. Considering
the separability problem within the LUR criterion, in section 3.4 we have reformulated it in
terms of covariance-matrix elements of WF (20). In particular, we have found a stronger
version of the LUR criterion (illustrated by formula (21)) once more involving the covariance
matrix. This generalized criterion, which has been tested both on Bell states and on Werner
states, evidences that the presence of strong correlations can be used to detect non-separability.
Finally, in section 3.5, we have studied the analogue of the GUP-based separability criterion
(continuous case) from the viewpoint of discrete WFs. We have shown that adopting the
same procedure of the continuous case leads to criterion (25). The latter does not succeed in
detecting entanglement as a consequence of the fact that the set of operators used to build the
discrete GUP is too small. In order to cure this problem, we have enlarged such an operator
set thus obtaining that M̃ � 0 ⇔ ρT2 � 0. Such an equivalence provides the basis to extend
in an effective way the GUP-based separability criterion from the continuous to the discrete
case.
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Future work about entanglement properties of the two-qubit WF will be developed in two
directions. Our first objective is to derive, relying on equation (25), the explicit form of a
generalized GUP-based separability criterion from a suitably enlarged operator set. A second
important problem which deserves to be deepen is to establish how the presence of negative
elements in WFs Wρ (and WρT2 ) relevant to entangled states is related to the violation of
inequality 21 issued from the LUR condition. Such aspects will be investigated in a separate
paper.
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